IDS: A Divide-and-Conquer Algorithm for Inference in Polytree-Shaped Credal Networks
نویسندگان
چکیده
A credal network is a graph-theoretic model that represents imprecision in joint probability distributions. An inference in a credal net aims at computing an interval for the probability of an interest event. The algorithms for inference in credal networks can be divided into exact and approximate. The selection of such an algorithm is based on a trade off that ponders how much time someone wants to spend in a particular calculation against the quality of the computed values. This paper presents an algorithm, called IDS, that combines exact and approximate methods for computing inferences in polytreeshaped credal networks. The algorithm provides an approach to trade time and precision when making inferences in credal nets. Resumo. Uma rede credal é um formalismo baseado em grafos que representa imprecisão em distribuições conjuntas. Uma inferência em uma rede credal objetiva o cômputo de um intervalo de probabilidades para um evento de interesse. Os algoritmos para inferência em redes credais podem ser classificados como exatos ou aproximados. A seleção de um algoritmo exige uma análise de custo×benefı́cio que pondera quanto tempo se deseja gastar no cálculo de um intervalo em relação a qualidade das aproximações. Este artigo apresenta um algoritmo, chamado IDS, que combina métodos exatos e aproximados no cômputo de inferências em redes com topologia em polytree e que provê uma estratégia para limitar o esforço computacional empregado em uma inferência.
منابع مشابه
Set-Based Variational Methods in Credal Networks: the SV2U Algorithm
Abstract. Graphical models that represent uncertainty through sets of probability measures are often referred to as credal networks. Polynomial-time exact inference methods are available only for polytree-structured binary credal networks. In this work, we approximate potentially intractable inferences in multiconnected binary networks by tractable inferences in polytree-structures. We propose ...
متن کاملInference in Credal Networks with Branch-and-Bound Algorithms
A credal network associates sets of probability distributions with directed acyclic graphs. Under strong independence assumptions, inference with credal networks is equivalent to a signomial program under linear constraints, a problem that is NP-hard even for categorical variables and polytree models. We describe an approach for inference with polytrees that is based on branch-and-bound optimiz...
متن کاملBinarization Algorithms for Approximate Updating in Credal Nets
Credal networks generalize Bayesian networks relaxing numerical parameters. This considerably expands expressivity, but makes belief updating a hard task even on polytrees. Nevertheless, if all the variables are binary, polytree-shaped credal networks can be efficiently updated by the 2U algorithm. In this paper we present a binarization algorithm, that makes it possible to approximate an updat...
متن کاملComplexity of Inferences in Polytree-shaped Semi-Qualitative Probabilistic Networks
Semi-qualitative probabilistic networks (SQPNs) merge two important graphical model formalisms: Bayesian networks and qualitative probabilistic networks. They provide a very general modeling framework by allowing the combination of numeric and qualitative assessments over a discrete domain, and can be compactly encoded by exploiting the same factorization of joint probability distributions that...
متن کاملLocal Computation in Credal Networks
The goal of this contribution is to discuss local computation in credal networks — graphical models that can represent imprecise and indeterminate probability values. We analyze the inference problem in credal networks, discuss how inference algorithms can benefit from local computation, and suggest that local computation can be particularly important in approximate inference algorithms.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2005